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Abstract 
 

This paper proposes transfer learning and fine-tuning techniques for a deep learning model to 

detect three distinct brain tumors from Magnetic Resonance Imaging (MRI) scans. In this work, 

the recent YOLOv4 model trained using a collection of 3064 T1-weighted Contrast-Enhanced 

(CE)-MRI scans that were pre-processed and labeled for the task. This work trained with the 

partial 29-layer YOLOv4-Tiny and fine-tuned to work optimally and run efficiently in most 

platforms with reliable performance. With the help of transfer learning, the model had initial 

leverage to train faster with pre-trained weights from the COCO dataset, generating a robust 

set of features required for brain tumor detection. The results yielded the highest mean average 

precision of 93.14%, a 90.34% precision, 88.58% recall, and 89.45% F1-Score outperforming 

other previous versions of the YOLO detection models and other studies that used bounding 

box detections for the same task like Faster R-CNN. As concluded, the YOLOv4-Tiny can 

work efficiently to detect brain tumors automatically at a rapid phase with the help of proper 

fine-tuning and transfer learning. This work contributes mainly to assist medical experts in the 

diagnostic process of brain tumors. 
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1. Introduction 

The Central Nervous System (CNS) is home to some of the most critical human body 

components, including the brain and the spinal cord. These two mentioned parts perform 

sophisticated functions that, until today, are not fully understood. One of which is the 

development of brain tumors, where a massive uncontrolled growth of abnormal cells arises. 

Benign or malignant, these tumors tend to cause damage and discomfort to a person that can 

potentially lead to an early demise or life-long complications. In recent studies, the commonly 

diagnosed tumors consisted of Glioma, Meningioma, and Pituitary tumors. These primary 

brain tumors contribute to the entire list of cancer cases in the United States for about 1.4% 

having 20,500 new cases and 12,500 deaths per year [1, 2]. Cerebral glioma is an alarming 

type of tumor that originates in the glial cells of the brain. This tumor can become overly 

aggressive and spread quickly to other parts of the body [2]. Currently, glioma affects 

approximately 14,000 people in the United States a year and is continuously increasing over 

time [3]. If not diagnosed early, severe glioma can expand greatly and become physically 

visible [4, 5]. According to the World Health Organization (WHO), this type of tumor 

frequently falls under a grade of IV. In which the fourth level is considered malignant and fatal 

compared to its lower counterparts [6]. In contrast, a pituitary tumor is a less progressive brain 

tumor that develops in the pituitary gland. Unlike glioma, pituitary tumors do not cause violent 

spread to other parts of the body, and its likelihood to become cancerous is rare [7]. Another 

common non-glial intracranial tumor, meningioma, affects about six to eight out of 100,000 

people a year. This tumor can originate from the brain’s meningeal coverings or even on the 

meninges of the spine. Like the pituitary tumor, meningioma tumors are usually benign and 

do not require immediate treatment, and are asymptomatic. However, there are instances 

where it can grow more rapidly than usual, leading to a higher II or III grade where symptoms 

including frequent morning headaches, vision impairment, or even seizures start to arise [8-

11]. Regardless of the degrees and severity, brain tumors must have a proper diagnosis and 

immediate treatment to reduce the chances of an untimely demise [12].  For that reason, 

patients experiencing symptoms related to these brain tumors must undergo a non-invasive 

method such as Magnetic Resonance Imaging (MRI) for an immediate diagnosis [13]. 

However, the task of analyzing the results produced by MRI scans requires meticulous 

observation and a high-level of proficiency and is impossible for an ordinary person to perform. 

Some hospitals and healthcare centers still lack the expertise to serve these needs and adding 

to the already lengthy diagnosis. [14].  

Researchers and the likes had recently developed specialized solutions to overcome the 

difficulty of diagnosing several life-threatening diseases using automated Computer-Aided 

Diagnosis (CAD). Through this method, medical instruments can provide rapid and accurate 

detection to help medical experts lengthen the span or even improve the quality of a patient’s 

life [15]. 

Moreover, with the help of Machine Learning (ML) and Computer Vision (CV), it 

produced formidable solutions called Deep Convolutional Neural Networks (DCNN). These 

DCNNs are state-of-the-art models that had solved complex CAD problems in terms of 

recognition, classification, segmentation, and even detection [16]. 

 However, most existing CAD solutions for brain tumor detection and identification based 

on DCNNs does not run efficiently on most platforms and requires intensive computational 

resources. For most DCNNs, the lighter classification models have limitations as it cannot 

point out the tumor’s exact location. On the other hand, a segmentation model can locate the 

affected area using a mask and identify the tumor but requires higher computing costs. Having 
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ordinary devices for such a solution can cause inefficient performance and unsatisfactory 

results [17-19]. Therefore, this work aims to exhibit and employ a recent DL model to produce 

a lighter solution with better performance to detect brain tumors from MRIs. Such a solution 

can emanate better flexibility for medical experts and small healthcare facilities to produce a 

faster diagnosis of brain tumors in most case scenarios. 

2. Related Works 

Recently, numerous DL models and various imaging techniques have enhanced CAD systems 

to distinguish glioma, meningioma, and pituitary brain tumors. 

Cheng et al. [20] initiated the use of the Content-based Image Retrieval (CBIR) technique 

from a robust dataset of 3064 T1-weighted contrast-enhanced (CE) MRI images to segment 

brain tumors. Their study made use of a novel framework that augmented tumor regions to 

work as the region of interest (ROI) divided into subregions according to intensities with the 

use of adaptive spatial division. Successively, they used the Fisher kernel to accumulate all 

regions and produced an image-level signature, achieving a Mean Average Precision of (mAP) 

94.68%.  From the dataset contributed by Cheng et al. ’s work, many began to explore DL’s 

capability to classify the three brain tumors from MRIs. Through further research, DCNN 

became well-known due to its performance to classify multiple classes accurately compared 

to other methods. In the work of Swati et al. [21], they managed to use a pre-trained DCNN 

like the VGG19 with the help of transfer learning. Transfer learning provided the initial 

training needs for their custom classifier to use essential image recognition features 

immediately. 

With fine-tuning, the previous VGG19 managed to classify images according to their 

requirement. Their work concluded that their fine-tuned block-wise VGG19 required a less 

demanding development cost than other models involving handcrafted feature extractors. The 

classification accuracy of their work achieved 94.82%. Deepak et al. [22] also applied the 

transfer learning method to perform a multi-class classification for CAD. Their work follows 

the patient-level five-fold cross-validation to classify three distinct brain tumors from a similar 

data source. Using the pre-trained DCNN GoogleNet and their proposed training approach, 

their work achieved an outstanding 98% accuracy. Their work further established that transfer 

learning and fine-tuning methods could favorably contribute to brain tumors classification 

when appropriately performed.  

The study of Rehman et al. [23] employed image processing methods to augment their 

dataset to improve their model performance. Various affine transformations of image samples 

helped their selected DCNNs like AlexNet, GoogleNet, and VGG16 to produce more features. 

Their classifiers attained accuracies of 97.39%, 98.04%, and 98.69%, respectively. Instead of 

using pre-trained models, Sultan et al. DCNNs [24] proposed a custom-built CNN model to 

perform a multi-class classification from the same set of brain tumors mentioned. The CNN 

structure used several activation functions, normalization, pooling, and dropout layers to 

control overfitting. Their work attained a significant performance of 98.7% accuracy rate that 

outperformed other state-of-the-art, giving importance to the impact of model tuning on image 

classification. CNN’s limitless potential for image classification continued to progress with 

newer models with a more sophisticated approach. Noreen et al. [25] proposed using a more 

recent DCNN model, namely, DenseNet201 and InceptionV3, to diagnose brain tumors. Their 

approach developed a concatenated multi-stage feature extraction of tumors and generated 

accurate predictions. As a result of their work, they produced 99.34% for InceptionV3 and 

99.51% for DenseNet201. Apart from the mentioned classification and segmentation studies 
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for brain tumors, Bhanothu et al. [26] used an object detection model called Faster R-CNN. 

Their selected work detected locations of brain tumors in MRIs with bound boxes and 

identified them specifically. However, due to the infancy stage of DCNN object detection 

methods, Faster R-CNN struggled to solve the problem and only attained an mAP of 77.60%. 

The following works mentioned summarized in Table 1 displayed a remarkable 

performance in brain tumor diagnosis. Most of the works attained significant results mainly 

with classifications and handcrafted segmentation methods, unlike object detection. However, 

according to recently conducted medical imaging studies, a recent object detection model had 

improved to compete with existing solutions with better outcomes.  

 
Table 1. Summary of several algorithms applied in brain tumor diagnosis 

Author Model Approach Performance Year 

Cheng et al. 
Novel-segmentation 

model 
Segmentation mAP of 94.68% 2016 

Bhanothu et 

al. 
Faster R-CNN Detection mAP 77.60% 2020 

Swati et al. VGG19 Classification Accuracy of 94.82% 2019 

Deepak et al. GoogleNet Classification Accuracy of 98% 2019 

Rehman et 

al. 

AlexNet, GoogleNet, 

VGG16 
Classification 

Accuracies of 97.39%, 98.04%, and 

98.69%, respectively 
2019 

Sultan et. al Custom-CNN Classification Accuracy of 98.7% 2019 

Noreen et al. 
DenseNet201 and 

InceptionV3 
Classification Accuracies of 99.34% and 99.51% 2020 

 

In the study of Al-masni et al. [27], they applied the “You Only Look Once” (YOLO) 

detection model for the simultaneous detection of breast masses from multiple digital 

mammograms. The name YOLO pertains to its capability to assess the entire input image 

rather than just patches of regions during training and testing phases. This approach gave a 

substantial speed advantage and less overhead use of YOLO over the other region-based 

algorithms like Fast R-CNN [28] and the traditional window-sliding technique [29]. They 

concluded that YOLO has a significant potential to improve CAD as their work detected 

masses accurately with a score of 99.7%. Another study by Ü nver et al. [30] also proved 

YOLO’s proficiency in medical imaging. Their YOLOv3 model trained using 2000 labeled 

images to detect skin lesions without any augmentation. Added with a segmentation algorithm, 

GrabCut, their work achieved 93.39% accuracy from 500 validation images and outperformed 

other works that used ResNet and U-Net models, concluding that YOLO can significantly help 

solve other medical imaging problems.  

In the recent past, YOLO models required significantly high computational requirements 

with mediocre performance, making it difficult to trust for future adaptations and deployment 

[31]. With that said, only a few considered employing a state-of-the-art model like YOLO for 

medical imaging. However, with the recent advancements of YOLOv3 and the recently 

released YOLOv4 [32], object detection achieved a notable increase in performance compared 

to other similar solutions with less expense. Therefore, this work proposes to analyze the 

performance of the recent YOLOv4 model in terms of training and yielding an automated 

CAD detection model that focuses on glioma, meningioma, and pituitary brain tumors to assist 

medical experts in the diagnostic process. This work also aims to employ a lighter YOLOv4 

model with lesser disk and computational consumption to ease deployment on most platforms. 

Given these statements and performance drawn from other medical imaging studies that used 

YOLO, automated brain tumor detection from MRIs can still improve. No other works have 
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yet employed the YOLOv4 for brain tumor detection in MRIs during this time and justified its 

overall precision. 

The rest of the article consists of the given order: Section 3 includes the materials and 

methods to train the YOLO-based model with the sourced dataset. Section 4 evaluates the 

results of the following experiments conducted based on the proposed method. Lastly, Section 

5 provides a conclusion based on the produced results. 

3. Materials and Methods 

3.1 The Proposed MRI Brain Tumor Detection Model 

This section provides a brief discussion of the proposed MRI brain tumor detection model. As 

presented in Fig. 1, this work selected to use the YOLOv4-Tiny, a smaller version of the 

YOLOv4 model, to consume less computational resources [32]. The model initially pre-

trained with the COCO dataset [33] to attain primitive image recognition features and alleviate 

data scarcity. However, the pre-trained YOLOv4-Tiny model did not immediately recognize 

MRI brain tumors due to the current hyper-parameter settings and pre-learned features 

acquired from the COCO dataset. Therefore, this work also fine-tuned and re-purposed the 

model to detect the object of interest only. Once pre-trained and fine-tuned, the model re-

trained to initialize new weights from the sourced dataset of labeled MRI brain tumors. This 

process generated a YOLO-based model that detects meningioma, glioma, and pituitary 

tumors from MRIs. 
 

 
Fig. 1.  The blueprint of the proposed YOLO-based MRI brain tumor detection model 

3.2 Dataset Preparation 

The dataset used in this work came from Cheng et al. [20]. In their work, the MRI scans within 

the dataset were collected initially from the Nanfang Hospital located in Guangzhou, China 

dating from 2005 to 2010. Table 2 defines the dataset specification, including 2D slices of T1-

weighted CE-MRI images of 708 meningioma, 1426 glioma, and 930 pituitary brain tumor 

samples.  
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Table 2. Specification of the MRI brain tumor dataset 

Class Coronal Axial Sagittal Total 

Meningioma 232 208 268 708 

Glioma 493 494 439 1426 

Pituitary 321 291 318 930 

Total 1046 993 1025 3064 

 

Table 3 presents samples of each class in the dataset in various views, including axial, 

coronal, and sagittal from 233 anonymous patients pre-sorted and validated by an expert 

radiologist, according to the original author of the data source. The images presented have a 

standard dimension scale of 512x512 with a 49x49mm pixel size. Initially, the following 

images had a MAT format that required image processing methods. All the images were 

converted into JPG to provide an accessible image format presented in a 2D array for YOLO. 

The pixel intensities were also normalized using the min-max approach to eliminate any 

unwanted inconsistencies with future test samples [21]. 

 
Table 3. Brain tumor MRIs from various viewpoints 

Class Coronal Axial Sagittal Patients 

     

Meningioma 

   

82 

Glioma 

   

89 

Pituitary 

   

62 

Total    233 

 

In preparation for training and testing, the entire dataset was divided into a training set and 

a testing set according to a specific MRI view and class, as shown in Table 4. This approach 

can help determine how well the models can detect from the test data from the 20% of the 

entire dataset using an adequate number of learnable patterns from the other 80%. Furthermore, 

with a blind stochastic selection of samples, this work prevented the chances of adding bias 

choices that may result in a poor or a pre-determined outcome [34]. 

 
Table 4. Dataset distribution for training and testing 

Class Train (Ground Truth) Test Total 

Meningioma 566 142 708 

Glioma 1141 285 1426 

Pituitary 744 186 930 

Total 2451 613 3064 

 

Upon collection, the existing data did not have an appropriate label format for YOLO. 

Therefore, this work also performed a precise re-labeling approach to generate compatible 

ground truth images using an appropriate labeling tool [35]. Fig. 2 presents the input image 

(a), pre-defined segment (b) from the work of Cheng et al. [20], and the bounding box (c) used 

in this work.   
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Fig. 2.  Comparison of ground truth labels from a segment to a bounding box 

3.3 YOLOv4-Tiny Model 

This work mainly proposed using a lightweight YOLOv4 rather than the original structure. 

The tiny version had fewer layers of 29 (starting from 0) compared to the original with more 

than a hundred. Therefore, it made the training process faster with fewer computations without 

too much trade in detection performance. This work considered the approach and produced an 

easily deployable and replicable MRI brain tumor detection system. Furthermore, the compact 

version had better compatibility with most machines and smaller handheld devices like 

smartphones.  

Fig. 3 presents a visual representation of the YOLOv4-Tiny from the yolov4-tiny.conv.29 

[32]. The backbone includes several directly and indirectly connected components, an input 

layer, eighteen Convolution (Conv) layers with activations, nine routes, three Max-Pooling 

(MP) layers, and a YOLOv3 detector. The extractor begins with an input layer that takes an 

𝑁𝑥𝑁  image. The tiny version mainly uses a 416x416 by default. However, slight 

modifications of various sizes added further investigation on how the input layer impacts the 

overall model performance. One of the model’s primary component is the Conv layers that 

extract a robust set of learnable features from the input image. The backbone comes with an 

interchanging 3x3 and 1x1 receptive filters that strides over the 𝑁𝑥𝑁 input to produce a new 

set of feature maps or filters that pass through the network. 

The following sequence of Conv layers dynamically changes throughout the network in 

terms of size, strides, and filters that affect each output. During convolutions, the activation 

function initializes the mapping of each successive input and outputs that help in the learning 

process [36]. For this work, the Leaky-ReLU performed the activation in every Conv layer in 

a non-linear fashion to increase feature size. This activation also prevented the dying ReLU 

problem [37]. Another component of the backbone are routes that act as shortcuts to improve 

gradient flow across the entire network [38]. The output of specific Conv layers connects 

directly and indirectly to other layers that concatenate various layers that generated fine-

grained features [39]. Through this approach, the image maintained a rich resolution quality 

even after several downsamples. As part of the design to perform efficiently, the MP layer 

performed the downsizing of features into half, preventing a higher computing cost. However, 

even with the reduction process, the MP layer still preserved the highest output values 

generated using a consistent 2x2 filter with a stride of /2. This approach maintained the feature 

depth without the depletion of the entire resource during training. 
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Fig. 3.  The YOLOv4-Tiny feature extractor and backbone for the MRI brain tumor detection 

3.4 The Detection Unit 

In Fig. 4, the YOLOv3 detector served as the detection unit that takes its detection in the form 

of a regression problem instead of the conventional logistic approach to run at faster speeds. 

Based on the given structure, the network consists of 24 Conv layers with a filter size of 3x3 

for the automated extraction of robust image features. It is also worth mentioning that the 

architecture’s main inspiration was a DCNN called GoogleNet [40]. However, instead of using 

Inception blocks like GoogleNet, YOLOv3 uses a 1x1 downsizing filter to reduce the feature 

size to improve its computational efficiency. With this design, the model propagates an entire 

image through the network rapidly while calculating highly accurate probabilities [41]. 

 
Fig. 4.  The YOLOv3 detection unit [41] 

It is worth to mention that YOLOv4 still relied on YOLOv3 as a head detection unit. 

However, YOLOv4 had an improved backbone that employed the Cross-Stage Partial 

Network (CSPNet), in the form of CSPDarknet53. The CSPNet managed the model’s input by 

separating it into two sections and passing it singularly to a dense block. Therefore, it reduced 

the previously large computational requirements to train custom models, that made YOLOv4 

work on low-performing devices competently [42]. The neck section now consists of the 

Spatial Pyramid Pooling (SPP) and Path Aggregation Network (PAN). With SPP, a CNN 

model like YOLOv4 disregarded fixed image dimensions to improve its flexibility to learn 

and detect the various scaled images. This profound SPP method consists of arbitrary pooling 

of regions that produced fixed-length representations to train its detector with a single 

computation of features on an entire image [43]. Simultaneously, instead of using the previous 

Feature Pyramid Network (FPN) of YOLOv3, PAN took its place and improved the neural 

network propagation of YOLOv4 that boosted the flow of information over the entire network. 

Such an approach improved the propagation of features from the lower to upper network levels, 

which added further efficiency to the model performance [44]. 
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3.5 The Detection Approach 

This section briefly explains the detection process of the YOLO-based model. The process 

begins with the model interpreting an image using logical 𝑆𝑥𝑆 grids and the weighted feature 

sets to create a probability on an area of cells. If the center of a probable object falls to one of 

the cells, a preliminary bounding box is produced based on the prediction probability given by 

the trained model in (1). 
 

𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) = {
0,  ℎ𝑎𝑠 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
1,  ℎ𝑎𝑠 𝑛𝑜 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

 (1) 

 

The model then predicts with the use of 𝐾 various scaled boxes and extracts a 3D tensor 

based on (2), where 𝐶 represents the defined number of classes, four as the 

𝑡𝑥 , 𝑡𝑦, 𝑡𝑤 , 𝑡ℎ  bounding box prediction coordinates, and one as the confidence of prediction for 

each bounding box [31]. 
 

𝑆 ∗ 𝑆 ∗ (𝐾 ∗ (4 + 1 + 𝐶)) (2) 

 

In Fig. 5, the bounding box prediction based on the width 𝑝𝑤 and height 𝑝ℎ had offsets 

𝑐𝑥  and 𝑐𝑦  from the cluster centroid. When the cell offset from the upper left by (𝑐𝑥 , 𝑐𝑦) and 

the bounding box has values of 𝑝𝑤 and 𝑝ℎ, then the prediction corresponds to (3) [41]. 
 

 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 

𝑏𝑤 =  𝑝𝑤𝑒𝑡ℎ 

𝑏ℎ =  𝑝ℎ𝑒𝑡ℎ 

(3) 

 

  
Fig. 5.  Bounding box prediction with specifications 

 

Simultaneously, in (4), the Intersection Over Union (IoU) calculates whether the prediction 

closely matches a ground truth image from the dataset during the creation of bounding boxes. 

However, (5) defines that when the initially predicted object does not closely resemble the 

ground truth, the confidence score decreases, resulting in an unsatisfied prediction [28].  

Fig. 6 shows a visual sample of how the IoU works in evaluating an object where the 

bounding box surrounds the ground truth and a possible detection result from the algorithm. 

𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ =

𝑎𝑟𝑒𝑎(𝐵(𝑡𝑟𝑢𝑡ℎ) ∩ 𝐵(𝑝𝑟𝑒𝑑))

𝑎𝑟𝑒𝑎(𝐵(𝑡𝑟𝑢𝑡ℎ) ∩ 𝐵(𝑝𝑟𝑒𝑑))
 (4) 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑂𝑏𝑗𝑒𝑐𝑡) = 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (5) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020                      4825 
 

 

 
Fig. 6.  Ground truth sample for detecting a brain tumor (a),  

with the use of intersection (b) over union (c).  

 

For each grid cell, 𝐶 is determined based on 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡). Even with the multiple 

predictions over a specific object, only objects that meet the given threshold will achieve an 

initial bounding box. Eq. (6) formally presents the following [28]. 
 

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ (6) 

 

In most cases, during the initial detection, several potential object predictions can occur. 

However, with the application of the Non-Maximum Suppression algorithm [32], the detection 

model managed to retain only the prediction with the highest confidence score and eliminated 

any redundant boxes efficiently. Fig. 7 illustrates the detection process of the proposed YOLO-

based model. 
 

 
Fig. 7.  The YOLOv4 brain tumor detection process 

3.6 Transfer Learning, Fine-Tuning, and Model Training 

In most DL tasks, using inadequate learning data can produce a weak and inaccurate 

performance. However, transfer learning paved the way to train models and acquire substantial 

results without the need for massive data [45]. Hence, this work adopted this technique and 

used the pre-trained weights from the COCO dataset to improve the model performance to 

detect several brain tumors. The previously learned COCO features supplied the model with 

additional image recognition essentials needed for the detection process. Also, to further 

optimize the pre-trained model, the application of fine-tuning adjusted the resource allocation 

and prevented the depletion of memory during training and testing [46]. 

The initial step to fine-tune the model was to replace the default class numbers from 80 to 

three, in which the three corresponds to the brain tumors, namely, glioma, meningioma, and 

pituitary, as the default number of 80 corresponds to the previous classes from COCO. With 

the newly defined class size, every Conv filters must also shift from the default 255 to 24 as 

formally defined in (7) where 𝐶  corresponds to the number of classes, five as the YOLO 

coordinates, and three as the various scaled bounding boxes 𝐾. 

 

𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 3 ∗ (5 + 𝐶) (7) 



 4826                                                                Montalbo: A Computer-Aided Diagnosis of Brain Tumors Using 

a Fine Tuned YOLO-based Modelwith Transfer Learning 
 

Subsequently, other hyper-parameters like the batch size, subdivisions, learning rate, 

momentum, decay, and iterations are tailor-fitted for this work, as shown in Table 5. The fine-

tuned model trained with a batch size of 64, a subdivision of 8, and iterations of 6000. The 

learning rate, momentum, and decay for the training process were based on the current 

resource and adjusted optimally with values of 0.00261, 0.9, and 0.0005. Furthermore, to 

provide initial results of the performance during the training phase, the weights serialized 

automatically every 1000 iterations. 

 
Table 5. Hyper-Parameter configuration to fine-tune the model 

Hyper-Parameter Value 

Batch Size 64 

Subdivisions 8 

Learning Rate 0.0000261 

Momentum 0.9 

Decay 0.0005 

Iterations 6000 

3.7 Evaluation Metrics 

Once the model completed both the training and testing phases, the next step is to perform an 

appropriate performance measurement with standardized evaluation metrics for object 

detection to measure overall performance. 

This work selected a threshold 𝑘 of 0.5 to evaluate the Intersection over Union (IoU), 

Precision (PR), Recall (RE), and the mAP. The following are calculated based on the number 

of True Positives (TP), False Positives (FP), and False Negative (FN) detections by the model 

using a test set of 613 MRIs. The TP signifies a correctly detected tumor class with a correct 

label, while FPs are the detected non-tumors, and FNs are tumors that the model did detect 

properly. This work did not include True Negatives as the dataset did not have any negative 

samples (MRI without lesions or tumor) included. Thus, an F1-score plays a more relevant 

metric to measure the harmonic mean between FNs and FPs of the unbalanced dataset rather 

than accuracy [47]. 

In a global standard, Average Precision (AP) is the metric used to determine the overall 

detection prowess of object detection models rather than accuracy [48]. This metric pertains 

to the number of correctly and incorrectly classified samples of a specific class instance. Where 

the 𝑃(𝑘) refers to the precision at a specifically given threshold 𝑘, and ∆𝑟(𝑘) as the shift in 

the Recall (RE). Eq. (8) formally presents the AP [49]. 

 

𝐴𝑃 =  
1

𝑁
∑ 𝑃(𝑘)∆𝑟(𝑘)

𝑁

𝑘=1

 (8) 

 

The mAP calculates the mean of all AP for each category. Using the mAP as the primary 

key indicator can justify a model that worked best overall to detect brain tumors specifically. 

Eq. (9) formally presents the mathematical equation for the mAP [31]. 

 

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 (9) 

 

The Intersection over Union (IoU) determines the overlap between two bounding boxes. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020                      4827 
 

Eq. (10) calculates the IoU by having the intersection area divided by the area of union [28]. 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (10) 

 

In Eq. (11), the Miss Rate (MR) measures the FNs ratio compared to all the detected objects 

within the given image. In contrast, (12) measures the FPs instead. Both measures indicate 

better performance with lower values [50]. 

 

𝑀𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 (11) 

 

𝐹𝑃𝑃𝐼 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
 (12) 

 

In the medical field, the PR, RC, and the F1-Score metrics play a vital role to justify the 

ratio of correctly predicted positives towards all detections, potential detections, and the 

harmony between PR and RE, respectively. Similarly, in DL, the given metrics can determine 

a model’s effectiveness and establish its trustworthiness towards a specific task. The following 

are formally calculated based on (13), (14), and (15) [30]. 

𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13) 

 

𝑅𝐶 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ (𝑃𝑅 ∗ 𝑅𝐶)

𝑃𝑅 + 𝑅𝐶
 (15) 

4. Experimental Results and Discussion 

This section presents the overall performance results from the conducted experiments. It is 

worth to mention that this work trained several models with various input sizes for the 

proposed work to identify the most probable variant to solve the given problem. 

4.1 Average Loss and Convergence 

In this work, to evaluate if the model trained adequately with the training data, the loss graphs 

visualized the convergence of loss towards the local minima. As presented in Fig. 8, each 

graph’s blue lines state that the models did not have much loss or errors committed while 

validating from the image dataset. This characteristic of the loss line is ideal and indicates that 

the models validated the images correctly in a precise manner with minimal error and that the 

model learned gradually without fitting problems. Simultaneously, the red line indicated that 

the model progressively increased its precision from the training dataset over time. Fig. 8 (b), 

compared to others, attained the lowest average loss of 0.1953, followed by (a) with 0.2084 

and (c) with 0.2284. The following results justified that all models trained well in a stable 

manner through the span of 6000 iterations. The CIoU loss function [32] worked effectively 

without showing signs of over or underfitting and delivered a rapid convergence during the 
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phase of training.  

 

 

 
 

 Fig. 8.  Left-Right: YOLOv4-Tiny 608x608 (a), 416x416 (b), and 320x320 (c) 

 

4.2 Detection Count and Average Precision 

Table 6 presents the AP based on the number of TP and FP detections per class of each model. 

According to the results, YOLOv4-Tiny(416x416) had the highest AP for detecting 

meningioma tumors with 98.73%. The 608x608 follows this result with 98.53% and 320x320, 

with 97.85%. In terms of detecting glioma tumors, the 320x320 outmatched the rest, with 

86.13% having the 608x608 at 83.31% and the 416x416 at 84.68%. For the pituitary tumor 

detection, the 608x608 prevailed as the most precise, 96.23%, followed by 416x416 with 

96.01%, and 320x320 with 94.47%.  

Upon evaluation, all three models had shown different performances in detecting various 

types of tumors, making it challenging to determine which model is the most efficient. 

Therefore, with additional metrics, an additional evaluation set is performed to identify the 

most formidable brain tumor detection model. 

 
Table 6. The number of detections and average precision of each model per class 

Model 
 Meningioma-0  Glioma-1  Pituitary-2 

 TP FP AP  TP FP AP  TP FP AP 

YOLOv4-Tiny 

(608x608) 
 139 8 98.53%  220 57 83.31%  174 9 96.23% 

YOLOv4-Tiny 

(416x416) 
 138 6 98.73%  231 39 84.68%  174 13 96.01% 

YOLOv4-Tiny 

(320x320) 
 137 9 97.85%  234 42 86.13%  168 12 94.47% 

(a) Average Loss: 0.2084 (b) Average Loss: 0.1953 

(c) Average Loss: 0.2284 
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4.3 Overall Performance 

Table 7 presents the effect of input dimensions on the overall performance. The calculated 

results from the test dataset of 613 images generated the highest mAP of 93.14% from the 

416x416 variant. The 320x320 then followed with 92.82%. Surprisingly, the 608x608 had no 

improvements even with the increased dimension and had the lowest mAP of 92.69%. 

However, it had a slight increase in IoU having 71.77%, in which 320x320 only had 71.45%. 

In terms of the overall performance, 416x416 attained the highest mAP, IoU of 72.51%, RE 

of 88.58%, and an F1-Score of 89.45%. The least MR belonged to 608x608, with 1.11% 

leaving the rest with 2.16 for 416x416 and 1.82% for 320x320. The 608x608 had the highest 

FPPI of 12.19%, followed by 320x320 with 10.47%, and 416x416 with only 9.65%. 

 
Table 7. Comparison of the overall detection performance with various input dimensions 

Model  mAP IoU PR RC F1 MR FPPI 

YOLOv4-Tiny (608x608) 92.69 71.77 87.80 86.94 87.37 1.11 12.19 

YOLOv4-Tiny (416x416) 93.14 72.51 90.34 88.58 89.45 2.16 9.65 

YOLOv4-Tiny (320x320) 92.82 71.45 89.53 87.92 88.72 1.82 10.47 

4.4 Detections 

Fig. 9 presents the following detection made by each model from randomly selected test data. 

Surprisingly, the 416x416 with the highest mAP failed to detect the tumor in samples (a) and 

(b). Also, the 320x320 even outperformed it and detected the tumor in (a). Overall, only the 

608x608 managed to attain complete detections from the given set of randomly selected 

samples in the given figure. However, this does not entirely summarize the overall 

performance of each model. This section simply demonstrates how YOLO can detect various 

small to large brain tumors from the test set. 
 

Input Size 
Tumor Class  

(a) Glioma (b) Meningioma (c) Pituitary  

 

 

320x320 

 

 

 

 

 

 

416x416 

 

 

 

  608x608 

 

Fig. 9.  Detections from a set of randomly selected test data 

4.5 Size Allocation and Computational Cost of YOLOv4-Tiny 

Currently, object detection seeks further improvements in precision and less storage 

consumption that implicates the concept of ubiquitous computing with DL. A lesser costing 

model allows users to use robust DL applications across multiple computing platforms [51]. 
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Fig. 10 presents the computational cost (GFLOPS), detection speed (s), and size allocation 

(MB) of the following brain tumor detection models trained with various YOLO-tiny versions. 

The evaluated results show that YOLOv4-Tiny had the smallest allocation size requirement 

than the older versions with 22.989MB. Due to the slightly larger backbone size, YOLOv4-

Tiny had a slightly higher GLOPS of 6.79 while the v2 and v3 had 5.346 and 5.451. However, 

compared to others with higher GLOPS, v2 still consumed the most with 43.124MB, followed 

by v3 with 33.91MB. Overall, v4 and v2 attained excellent performance in terms of detection 

speed of only 3 seconds, unlike v3, that required 5s. 
 

 
Fig. 10.  Comparison of computing cost, detection speed, and disk consumption of the YOLOv4-Tiny 

with previous versions 

4.6 Comparison of Performance with Other Object Detection Models 

This section compares the results of this work from some studies that performed brain tumor 

detection from MRIs. However, this work does not entirely provide a direct comparison due 

to variations in methods. The primary purpose is to present how the proposed method 

improved brain tumor detection status in object detection. It is worth to mention that only a 

handful of studies exist that have used bounding boxes to detect brain tumors in MRIs. 

Classification and segmentation methods are the usual studies conducted. However, object 

detection already had plenty of results in other medical fields, indicating its effectiveness [27, 

30]. Object detection can present a new perspective to other researchers into diving more 

profoundly with object detection for brain tumor detection in MRIs through this work.  

Table 8 presents a few of the only studies that employed object detection methods with 

bounding boxes to locate brain tumors in MRIs. In comparison, this work attained the highest 

mAP of 93.14% with the YOLOv4-Tiny model while the rest acquired a lesser rate. These 

results show that the YOLOv4-Tiny in this work surpassed the other existing brain tumor 

detection methods. 

 
Table 8. Comparison with existing object detection approach for brain tumors from MRIs 

Method Dataset Size Classes Dataset Results 

YOLOv4-Tiny 3064 3 [20] 93.14%  

YOLOv3-Tiny 3064 3 [20] 91.98%  

YOLOv2-Tiny 3064 3 [20] 79.90%  

Faster R-CNN [52] 3064 3 [20] 91.66% 

Faster R-CNN [26] 2406 3 [20] 77.60% 
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5. Conclusions 

This work presented the efficiency of employing transfer learning and fine-tuning on a recent 

YOLOv4-Tiny model to perform the detection of glioma, meningioma, and pituitary brain 

tumors in MRIs. The dataset used had 3064 T1-weighted CE-MRIs containing several axial, 

coronal, and sagittal views for each given class. Several data pre-processing methods included 

the min-max normalization of pixel contrast, file conversion, and generation of training labels 

for the tumor coordinates. The 29-layer YOLOv4-Tiny served as a backbone to extract a robust 

set of features to enable the detector to learn valuable patterns. The model also used the pre-

learned weights from COCO through transfer learning and the newly initialized feature sets 

generated by the extractor from the MRI dataset. With the fine-tuned network, the model 

trained end-to-end optimally without issues. Both mentioned techniques provided additional 

leverage for a quick and robust training process. Upon evaluation, the compact YOLOv4-Tiny 

with a 416x416 input dimension precisely detected the distinct brain tumors with a 93.14% 

mAP set at a 0.5 threshold. With such performance yielded in this work, the YOLOv4-Tiny 

(416x416) only consumed a 22.989MB of disk space with 6.79GFLOPS and a 3s detection 

speed.  

This work concludes that object detection models pre-trained and fine-tuned like the 

YOLOv4-Tiny can efficiently diagnose brain tumors from MRIs. Compared to classification 

methods, this work localized brain tumors from the MRIs and classified it specifically with 

less comprehension required. Unlike segmentation methods, the proposed work can run on 

most platforms due to the relatively small space requirement and low computational cost. 

Moreover, compared to existing works that employed bounding box detection methods for 

meningioma, glioma, and pituitary brain tumors, this work prevailed as the most precise. 

However, this work still has certain caveats in terms of having bounding boxes to detect 

tumors. The use of bounding boxes still limits the precise selection of tumors compared to a 

segmentation approach. With that said, YOLO can capture excess areas due to the complex 

morphology of tumors compared to the limited shape of the bounding box. Training YOLO-

based models and other similar models also require lengthy and tedious dataset labeling 

compared to a classification approach. YOLO can also become sensitive to the lack of data, 

requiring additional MRI images for future works. Nonetheless, the trade-offs are relatively 

minimal compared to the emitted solution as YOLO can still scale and evolve through 

continuous research to resolve the mentioned concerns. 
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